
Строки – 1

Denis Bakin

1

std::string – особый вектор

• std::string — контейнер символов, похожий на std::vector<char>
• Многие методы вектора доступны: size(), push_back(), pop_back(), resize()
• Дополнительные методы для работы с текстом

2

Конкатенация строк

#include <iostream>
#include <string>

int main() {
std::string s = "Some string";

s += ' '; // добавляем символ (аналог push_back)
s += "functions"; // добавляем строку в конец

std::cout << s << "\n"; // Some string functions
}

• Оператор += работает и с char, и с const char*

3

Выделение подстроки: substr

std::string s = "Some string functions";

// substr(pos, len) -- подстрока длины len с позиции pos
std::string sub1 = s.substr(5, 6); // "string"

// substr(pos) -- подстрока с позиции pos до конца
std::string sub2 = s.substr(12); // "functions"

• Первый аргумент – начальная позиция (с 0)
• Второй аргумент – длина (необязательный)

4

Поиск в строке: find

std::string s = "Some string functions";

size_t pos1 = s.find(' '); // 4 (первый пробел)
size_t pos2 = s.find(' ', pos1 + 1); // 11 (следующий пробел)
size_t pos3 = s.find("str"); // 5 (позиция подстроки)
size_t pos4 = s.find("#"); // std::string::npos

• Возвращает позицию первого вхождения
• std::string::npos — если не найдено

5

Проверка результата find

std::string s = "Hello, world!";

size_t pos = s.find("world");

if (pos != std::string::npos) {
std::cout << "Найдено на позиции " << pos << "\n";

} else {
std::cout << "Не найдено\n";

}

• Всегда проверяйте результат на npos!

6

Вставка подстроки: insert

std::string s = "Some string functions";

// insert(pos, str) -- вставляет str перед позицией pos
s.insert(5, "std::");

std::cout << s << "\n"; // Some std::string functions

• Первый аргумент – позиция вставки
• Второй аргумент – вставляемая строка

7

Замена подстроки: replace

std::string s = "Some std::string functions";

// replace(pos, len, str) -- заменяет len символов с позиции pos
s.replace(0, 4, "Special");

std::cout << s << "\n"; // Special std::string functions

• Первый аргумент – начальная позиция
• Второй аргумент – длина заменяемой части
• Третий аргумент – новая подстрока

8

Удаление подстроки: erase

std::string s = "Special std::string functions";

// erase(pos, len) -- удаляет len символов с позиции pos
s.erase(8, 5); // удаляем "std::"

std::cout << s << "\n"; // Special string functions

• Аналогичный синтаксис: позиция + длина

9

Проверка префикса и суффикса (C++20)
#include <iostream>
#include <string>

int main() {
std::string phrase;
std::getline(std::cin, phrase);

if (phrase.starts_with("hello")) {
std::cout << "Greeting\n";

}

if (phrase.ends_with("bye")) {
std::cout << "Farewell\n";

}
}

• starts_with – проверка начала строки
• ends_with – проверка конца строки 10

Бесконечный ввод: концепция

• В Unix “everything is a file”
• Потоки ввода/вывода – как бесконечные файлы
• EOF (End Of File) – специальный символ конца
• В консоли: Ctrl+D (Unix)

11

Чтение до конца ввода

int a = 0, b = 0;

// Цикл продолжается, пока чтение успешно
while (std::cin >> a >> b) {

// обработка a и b
}

• Оператор >> возвращает true при успешном чтении
• Цикл завершается при EOF или ошибке

12

Чтение строки целиком: getline

#include <iostream>
#include <string>

int main() {
std::string line;

// Читает до символа '\n'
std::getline(std::cin, line);

std::cout << "Вы ввели: " << line << "\n";
}

• std::getline читает до конца строки
• Включает пробелы (в отличие от >>)

13

Разбор строки: stringstream
#include <iostream>
#include <sstream>
#include <vector>

int main() {
std::string line;
std::getline(std::cin, line); // "1 2 3 4 5"

std::stringstream ss(line);
std::vector<int> numbers;
int num;

while (ss >> num) {
numbers.push_back(num);

}
// numbers = {1, 2, 3, 4, 5}

}
14

stringstream – поток из строки

• std::stringstream – поток, работающий со строкой
• Поддерживает оператор >> как std::cin
• Удобен для разбора строки на части

std::stringstream ss("42 3.14 hello");
int i;
double d;
std::string s;

ss >> i >> d >> s;
// i = 42, d = 3.14, s = "hello"

15

Полный пример: чтение по строкам
#include <iostream>
#include <vector>
#include <sstream>

int main() {
std::vector<int> numbers;
std::string line;

while (std::getline(std::cin, line)) {
std::stringstream ss(line);
int num;
while (ss >> num) {

numbers.push_back(num);
}

}
}

16

Сводка методов std::string

Метод Описание
+= Добавление символа/строки в конец
substr(pos, len) Выделение подстроки
find(str, pos) Поиск подстроки
insert(pos, str) Вставка подстроки
replace(pos, len, str) Замена подстроки
erase(pos, len) Удаление подстроки

17

Битовые операции: обзор

• Работают с отдельными битами числа
• Основные операции в C++:

Оператор Название Пример
& AND (И) 5 & 3 = 1
\| OR (ИЛИ) 5 \| 3 = 7
^ XOR (искл. ИЛИ) 5 ^ 3 = 6
~ NOT (НЕ) ~5 = -6
<< Сдвиг влево 5 << 1 = 10
>> Сдвиг вправо 5 >> 1 = 2

18

Битовые операции: примеры

uint8_t a = 0b00000101; // 5
uint8_t b = 0b00000011; // 3

uint8_t and_result = a & b; // 0b00000001 = 1
uint8_t or_result = a | b; // 0b00000111 = 7
uint8_t xor_result = a ^ b; // 0b00000110 = 6

• & – бит равен 1, если оба бита равны 1
• | – бит равен 1, если хотя бы один бит равен 1
• ^ – бит равен 1, если биты различаются

19

Битовые сдвиги

uint8_t x = 0b00000101; // 5

uint8_t left = x << 2; // 0b00010100 = 20
uint8_t right = x >> 1; // 0b00000010 = 2

• << n – умножение на 2𝑛

• >> n – деление на 2𝑛 (целочисленное)

20

Маскирование битов

uint8_t byte = 0b11010110;

// Извлечь младшие 4 бита
uint8_t low = byte & 0x0F; // 0b00000110 = 6

// Извлечь старшие 4 бита
uint8_t high = (byte >> 4) & 0x0F; // 0b00001101 = 13

// Установить бит 3
byte = byte | (1 << 3); // 0b11011110

// Сбросить бит 2
byte = byte & ~(1 << 2); // 0b11011010

21

Кодировка UTF-8

• UTF-8 – кодировка переменной длины (1-4 байта)
• Совместима с ASCII (первые 128 символов)
• Самая распространённая кодировка в интернете

22

UTF-8: структура байтов

Диапазон кодов Байт 1 Байт 2 Байт 3 Байт 4
U+0000..U+007F 0xxxxxxx — — —
U+0080..U+07FF 110yyyyy 10xxxxxx — —
U+0800..U+FFFF 1110zzzz 10yyyyyy 10xxxxxx —
U+10000..U+10FFFF 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

• Первый байт определяет длину последовательности
• Продолжающие байты начинаются с 10

23

UTF-8: определение длины

int getUtf8Length(uint8_t firstByte) {
if ((firstByte & 0x80) == 0x00) return 1; // 0xxxxxxx
if ((firstByte & 0xE0) == 0xC0) return 2; // 110xxxxx
if ((firstByte & 0xF0) == 0xE0) return 3; // 1110xxxx
if ((firstByte & 0xF8) == 0xF0) return 4; // 11110xxx
return -1; // ошибка

}

• Проверяем старшие биты первого байта
• Маска выделяет нужные биты для сравнения

24

UTF-8: декодирование (3 байта)

// Декодирование 3-байтовой последовательности
// 1110zzzz 10yyyyyy 10xxxxxx → zzzzyyyy yyxxxxxx
uint8_t b1 = 0xE4, b2 = 0xB8, b3 = 0xAD; // китайский иероглиф �

uint32_t codepoint = ((b1 & 0x0F) << 12) // zzzz
| ((b2 & 0x3F) << 6) // yyyyyy
| (b3 & 0x3F); // xxxxxx

// codepoint = 0x4E2D (U+4E2D = �)

25

UTF-8: кодирование

void encodeUtf8(uint32_t codepoint, std::string& out) {
if (codepoint <= 0x7F) {

out += static_cast<char>(codepoint);
} else if (codepoint <= 0x7FF) {

out += static_cast<char>(0xC0 | (codepoint >> 6));
out += static_cast<char>(0x80 | (codepoint & 0x3F));

} else if (codepoint <= ...) {
...

}
}

26

UTF-8 и std::string

• std::string хранит байты, не символы Unicode
• s.size() возвращает число байтов, не символов
• Для корректной работы с Unicode нужна специальная обработка

std::string s = "Привет"; // UTF-8
std::cout << s.size() << "\n"; // 12 (не 6!)
// Каждая кириллическая буква = 2 байта

27

